GENERAL NOTES:

The Storm Capture™ system by Oldcastle Precast is part of the stormwater management system for the respective site, as prepared by the project design engineer. It is the responsibility of the design engineer to determine design flow rates, pre-treatment and post-treatment requirements, storage volume, and ensure the final design meets all conveyance and storage requirements. System design and type, soil analysis, loading requirements, cover height and module size determine the foundation type and requirements as stated herein. Any variations found during construction from the site and system analysis must be reported to the project design engineer. The project design engineer is responsible for obtaining a geotechnical engineering report verifying the bearing capacity stated in design notes.

DESIGN NOTES:

1. **Design Loadings:**
 A. AASHTO HS-20-44 W/ Impact.
 B. Depth of Cover = 6" - 5'-0".
 C. Assumed Water Table = Below Bottom.
 D. Equivalent Fluid Pressure = 45 PCF.
 E. Lateral Live Load Surcharge = 80 PSF.
 F. No lateral surcharge from adjacent structures.

2. Concrete 28 Day Compressive Strength shall be 6,000 PSI.

5. Storm Capture Module type = Detention.

7. Required Native Allowable Soil Bearing Pressure = 3,000 PSF.

8. Reference Standards:
 A. ASTM C 890
 B. ASTM C 891
 C. ASTM C 913

9. Less than 6" or greater than 5' of cover requires custom structural design and may require thicker subgrade.

INSTALLATION NOTES:

The Storm Capture™ Module System is to be installed in accordance with ASTM C891, Installation of Underground Precast Utility Structures. Project Plan and Specifications must be followed along with any applicable regulations.

1. Plan Line, Grade and Elevations must be followed.

2. Where specified, an 8 oz. non-woven geotextile fabric must be used as a separation layer around the Storm Capture System.

3. Penetrations in the geotextile may only be made with smooth wall pipes. Make penetrations for all outlets before making penetrations for any inlets.

4. All subgrade materials, if specified, must be clean, durable, crushed aggregate compacted or rolled to achieve 95% Standard Proctor Density. Oldcastle recommends size 5, 56, or 57 (per ASTM C33).

5. Designated embedded lifters must be used. Use proper rigging to assure all lifters are equally engaged with a minimum 60 degree angle on slings as noted and in accordance with Oldcastle lifting procedures.

6. Modules must be placed as close together as possible, and gaps shall not be greater than 3/4". All exterior system joints shall be covered with a Min. 4" joint wrap on sides and top (C5-212 Conesla or Equivalent). In a clamshell design, install one row C5-102 Conesla (or Equivalent) between precast pieces.

7. Authorization should be given by the project engineer or designated person prior to placement on backfill for the system. Cape should be taken during placement of backfill not to displace modules or joint wrap. Backfill shall be compacted to 95% Standard Proctor density or as specified, and should not be compacted within 6" of module.

8. Construction equipment exceeding design loading shall not be allowed on structure.

9. Termaducts to be knocked out at specified locations in field by others. See site layout for locations.

INLETS AND RISERS:

All pipe inlets shall extend inside module a minimum of 4". Place a non-shrink, non-metallic grout. Min. 3,000 PSI in annular space to eliminate all voids.

REVISIONS

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
</table>

TABLE OF CONTENTS

1. General Notes
2. Design Notes
3. Installation Notes
4. Inlets and Risers