

DUAL-VORTEX Separator

Enhanced Gravity Separation of Stormwater Pollutants in a Compact Configuration

Dual-Vortex Efficiency

- Particle settling is enhanced by circular flow patterns and a highly circuitous flow path created by two independent vortex cylinders.
- Settled particles are collected in the isolated bottom storage area, while floating trash, debris and petroleum hydrocarbons are retained in the cylinders and upper storage areas.
- During peak events, flows in excess of design treatment overtop the bypass weir and exit the system without entering the cylinders and lower storage area, thereby eliminating re-entrainment issues.

FEATURES:

- Maintenance Accessible Design
- Economical Installation
- Access Options
- Online System Capability
- Durable Construction
- Proven Performance
- Treatment Train

BENEFITS:

- Open access to accumulated floatables and sediment storage area
- Provided as compact round or square manholes or small vaults
- Multiple access options (manhole cover or optional hinged lid)
- Internal high-flow bypass provides for online or offline configurations
- Stainless-steel components installed in a reinforced concrete structure
- Third party tested and certified
- Can be installed upstream of infiltration, detention and retention systems or other treatment BMP's

HYDRODYNAMIC SEPARATION

Dual-Vortex Separator Offers an Innovative, Economical Alternative for Removal of Suspended Pollutants from Stormwater Runoff

How it Works

STEP 1

Independent Vortex Cylinders & Control Weir - Flows are directed to the two independent vortex cylinders where particle settling is enhanced by circular flow patterns.

STEP 2

Captured Floatables - Floating trash, debris and petroleum hydrocarbons accumulate at the top of the two cylinders where they are held until transfer into the upper storage area by peak storm events.

STEP 3

Removal of Total Suspended Solids (TSS) - Particle settling is enhanced by the circular flow patterns and a highly circuitous flow path created by two independent vortex cylinders. Sediments are collected and retained in the isolated bottom storage area.

STEP 4

High-Flow Bypass - Flows in excess of the design treatment overtop the bypass weir and exit the system without entering the cylinders and reentraining captured pollutants.

MODELS AND NOMINAL DIMENSIONS							
Model No.	Structure Diameter (ft.)	Standard Sump Depth* (ft.)	Minimum Rim to Invert Depth (ft.)	Sediment Storage* (cubic feet)	Oil and Floatable Storage (cubic feet)	NJCAT Treatment Flow Rate (cfs)	Maximum Treatment Flow Rate (cfs)
DVS-36	3	4.5	2.5	11	6	0.56	0.56
DVS-48	4	5.0	3.0	19	15	1.00	1.25
DVS-60	5	5.5	3.5	29	29	1.56	2.50
DVS-72	6	6.5	4.5	42	49	2.25	4.25
DVS-84	7	7.0	5.0	58	79	3.06	6.50
DVS-96	8	8.0	5.5	75	116	4.00	9.50
DVS-120	10	10.0	7.0	118	226	6.25	16.80
DVS-144	12	11.5	8.0	170	388	9.00	26.40

*Depth of unit can be increased to add storage capacity.

Available Options

Flume inlet control for grated inlet applications.

